jiveapi Documentation
Release 0.2.0

Jason Antman

Nov 19, 2018

Contents

Scope and Status
1.1 Supported Actions

Requirements
Usage
License

Contents

5.1 Getting Started
Local Installation
Use via Docker Image
Authentication
Important Notes

5.14.1

5.14.2

5.2 Usage and Examples

JiveContent Return Dict Format

JiveContent Images Dict Format

5.1.1
5.1.2
5.1.3
5.1.4

521
522
523
524

524.1
5242
5243

525
5.2.6
5.2.7

53.1

532
54 jiveapi

5.4.1

54.1.1
54.1.2
5.5 Changelog
0.2.0 (2018-04-21)

5.5.1

Uploading HTML as a Document
Updating an Existing Document

Notable Options
Docker Examples
Sphinx Theme and Builder
Jive Sandbox for Testing
5.3 Development and Testing
Installing for Development

jiveapi package
Subpackages e e 16
Submodules

5.52 0.1.0 (2018-04-07)
6 Indices and tables

Python Module Index

jiveapi Documentation, Release 0.2.0

Ui S5 : . : . . .
build JEE==iIg Simple and limited Python client for Jive collaboration software ReST API v3, along with

utilities for massaging HTML to display better on Jive. Also comes pre-installed in a Docker image and a Sphinx
theme and builder for Jive-optimized HTML output.

Note: Full documentation is hosted at: jiveapi.readthedocs.io. This README is just a short introduction.

Contents 1

http://travis-ci.org/jantman/jiveapi
https://readthedocs.org/projects/jiveapi/?badge=latest
http://www.repostatus.org/#wip
https://www.jivesoftware.com/
https://developers.jivesoftware.com/api/v3/cloud/rest/index.html
http://jiveapi.readthedocs.io/

jiveapi Documentation, Release 0.2.0

2 Contents

CHAPTER 1

Scope and Status

I’'m writing this to be a working Python wrapper around a small portion of the Jive ReST API - specifically, up-
loading/publishing updating Documents, uploading embedded Images, and manipulating the input HTML to display
better in Jive. I’'m doing this in my personal time, but we’ll be using the project at work for a very limited require-
ment: “syndicating” documentation that we publish on internal web servers (mostly Sphinx and Hugo static sites) to
our corporate Jive instance. The main purpose for doing this is to reach a wider audience and for searchability, not
to faithfully reproduce the layout and styling of the original HTML. I don’t plan on adding support beyond what’s
required for that, but contributions are welcome.

For the time being, this should be considered Alpha-quality software. It’s young and likely only has a handful of code
paths exercised on a regular basis, and from what I’ve seen in practice and in the documentation, I can only assume
that Jive has many error conditions this software has yet to see. In short, for the time being, make sure you sanity
check things or don’t rely on this working 100% of the time. Bug reports are very welcome, but please be sure to
include full debugging output.

At least for this initial release, it is highly recommended that you capture DEBUG-level logging, as this will contain
the Jive internal IDs needed if something goes wrong.

Also be aware that Jive heavily modifies HTML, including stripping out and sometimes replacing id attributes,
breaking any internal anchor links containing dashes, etc. The high-level methods in this package make a best effort
to modify HTML to work in Jive, but nothing is guaranteed. Once again, this is focused on content not presentation.

1.1 Supported Actions

¢ Low-level API (direct interface to Jive API calls)

Get information on currently-authenticated user

Get API version information

Get Content, Create Content, and Update Content (i.e. Documents, Posts, etc.) in Jive from Python
dictionary equivalents of the native Jive API types.

Get binary Image data and Create Images that can be embedded in Content (i.e. Documents and Posts).

https://developers.jivesoftware.com/api/v3/cloud/rest/ContentService.html#getContent%28String%2C%20String%2C%20boolean%2C%20List%3CString%3E%29
https://developers.jivesoftware.com/api/v3/cloud/rest/ContentService.html#createContent%28String%2C%20String%2C%20String%2C%20String%29
https://developers.jivesoftware.com/api/v3/cloud/rest/ContentService.html#updateContent%28String%2C%20String%2C%20String%2C%20boolean%2C%20String%2C%20boolean%29
https://developers.jivesoftware.com/api/v3/cloud/rest/DocumentEntity.html
https://developers.jivesoftware.com/api/v3/cloud/rest/PostEntity.html
https://developers.jivesoftware.com/api/v3/cloud/rest/index.html
https://developers.jivesoftware.com/api/v3/cloud/rest/ImageService.html#getImage%28String%2C%20String%2C%20String%2C%20String%2C%20String%29
https://developers.jivesoftware.com/api/v3/cloud/rest/ImageService.html#uploadImage%28MultipartBody%29
https://developers.jivesoftware.com/api/v3/cloud/rest/ImageEntity.html

jiveapi Documentation, Release 0.2.0

Backdate Content items when creating or updating them.

List all Content in a Place.

» High-level wrapper API (provides assistance with generating parameters and massaging content):

Create and Update HTML Documents given HTML content and some parameters, including most of the
common parameters such as the place to post in, visibility, published/draft status, and keywords.

Not Yet Implemented: Create and Update HTML Posts given HTML content and some parameters, in-
cluding most of the common parameters such as the place to post in, visibility, published/draft status, and
keywords.

Modify HTML formatting to use Jive UI conventions (“jive-ize” HTML).

Given a HTML string that contains image tags referring to local images and the filesystem path containing
the images, upload each of them to Jive and modify the HTML to point to the images’ Jive URLs. Return
metadata about the content and images to the user for future updates. Use this metadata on future updates
to prevent re-uploading the same image.

Option to modify HTML to insert Jive-style information/notice boxes as header and footer, such as infor-
mation reminding users not to edit the document directly on Jive and giving links to the canonical source,
commit, and build that last generated the content.

Option to add a Jive Table of Contents macro to the beginning of the content.

* jiveapi also includes a basic Sphinx theme (called jiveapi) and Builder (also called jiveapi) optimized for
building single-page HTML for uploading to Jive.

Chapter 1. Scope and Status

https://developers.jivesoftware.com/api/v3/cloud/rest/PlaceService.html
http://www.sphinx-doc.org

CHAPTER 2

Requirements

jiveapi is also available in a self-contained Docker image with all dependencies. See https://hub.docker.com/r/jantman/
jiveapi/.
» Python 3.4+. Yes, this package is only developed and tested against Python3, specifically 3.4 or later. It should
work under 2.7 as well, but that is neither tested nor supported.
* requests

 premailer (optional, only required for high-level JiveContent interface)

* Ixml (optional, only required for high-level JiveContent interface)

https://hub.docker.com/r/jantman/jiveapi/
https://hub.docker.com/r/jantman/jiveapi/
http://docs.python-requests.org/en/master/
http://github.com/peterbe/premailer
http://lxml.de/

jiveapi Documentation, Release 0.2.0

6 Chapter 2. Requirements

CHAPTER 3

Usage

See the full documentation at: http://jiveapi.readthedocs.io/

http://jiveapi.readthedocs.io/

jiveapi Documentation, Release 0.2.0

8 Chapter 3. Usage

CHAPTER 4

License

This software is licensed under the Affero General Public License, version 3 or later. If you’re not redistributing or
modifying this software, compliance with the license is simple: make sure anyone interacting with it (even remotely
over a network) is informed of where the source code can be downloaded (the project URL in the Python package, or
the jiveapi.version.PROJECT_URL string constant). If you intend on modifying it, the user must have a way
of retrieving the exact running source code. If you’re intending on distributing it outside your company, please read
the full license and consult your legal counsel or Open Source Compliance policy.

https://www.gnu.org/licenses/agpl-3.0.en.html

jiveapi Documentation, Release 0.2.0

10 Chapter 4. License

CHAPTER B

Contents

5.1 Getting Started

5.1.1 Local Installation

pip install Jjiveapi

5.1.2 Use via Docker Image

docker pull jantman/jiveapi:VERSION where VERSION is the desired release version.

For Docker usage examples, see Docker Examples.

5.1.3 Authentication

Version 3 of the Jive ReST API is rather limited in terms of Authentication methods: OAuth is only supported for Jive
Add-Ons. The alternative is HTTP Basic, which is not supported for federated/SSO accounts. This project uses HTTP
Basic auth, which requires a Jive local (service) account.

5.1.4 Important Notes

5.1.4.1 Content IDs

When a Content object (e.g. Document, Post, etc.) is created in Jive it is assigned a unique contentID. This contentID
must be provided in order to update or delete the content. It is up to you, the user, to store the contentIDs generated
by this package when you create content objects. For example use it’s enough to record them from the CLI output.
For actual production use, I recommend using the Python API and storing the returned IDs in a database or key/value
store, or committing them back to the git repository. Also note that even though I’ve never seen a Jive contentID that
isn’t ~ [0-9]+$, the Jive API JSON presents and accepts them as strings and the API type documentation lists them
as strings.

11

https://github.com/jantman/jiveapi/releases
https://developer.jivesoftware.com/intro/#building-an-api-client

jiveapi Documentation, Release 0.2.0

For most Jive objects, you can obtain the ID by viewing it in the web interface and appending /api/v3 to the URL.
i.e. if you have a Space at https://sandbox. jiveon.com/community/developertest, you can find
its contentID in the JSON returned from https://sandbox. jiveon.com/community/developertest/
api/v3. Itis important to note that the “id” field of the JSON is not the same as the “contentID” field.

5.1.4.2 HTML

Jive’s HTML handling is somewhat finnicky. This package includes code that attempts to compensate for that. In
addition to some very specific styling required to get input HTML to look correct in Jive, Jive also does some annoying
things like:

* Removing or overwriting the id attributes of HTML elements.
» Assigning its own id attributes to anchors.

* Not allowing links to anchors with names including hyphens; they will be silently ignored and result in broken
links.

* Requiring explicit
\n sequences in <pre> elements in order to preserve linebreaks.
The workarounds we have in place for this are described further in the jiveize etree () method.

In addition, while Jive will happily accept a full HTML document as input, it appears to discard everything outside
of the <body> tag, including CSS. As a workaround for this, the inline_css_etree () method calls out to the
premailer library to convert all embedded CSS to inline CSS on the elements themselves.

5.2 Usage and Examples

5.2.1 JiveContent Return Dict Format

The JiveContent high-level wrapper methods that create or update content in Jive (specifically
create_html_document () and update_ html_document ()) return a dictionary describing the content ob-
ject that was created and various Jive attributes of it. This dict includes the content ID, which Jive uses to uniquely
identify content objects and must be known in order to update content in Jive. It also contains an images key, de-
scribed below under JiveContent Images Dict Format, that must be known in order to not re-upload all images when
content is updated.

This dict must be persisted if you want to programmatically update the content object in the future. The format of
the dict is as follows:

entityType [(string)] the entityType of the content object in Jive.
id [(string)] the ID of the content in Jive. This is only used internally to Jive and is distinct from the content ID.

html_ref [(string)] the URL to the content object in the Jive UI, i.e. the URL for users to access it at. Can possibly
be an empty string.

contentID |[(string)] the Jive content ID required to update this content object; must be passed in when updat-
ing existing content. While these IDs appear to only contain numeric characters, the Jive API documentation
explicitly states that they are strings.

type [(string)] the content type of the object, i.e. document or post.
typeCode [(int)] the numeric content type code of the object.

images [(dict)] information about the images contained in the content that have already been uploaded. Details are
in JiveContent Images Dict Format, below.

12 Chapter 5. Contents

https://github.com/peterbe/premailer

jiveapi Documentation, Release 0.2.0

Aside from images, all of the values are taken from the Jive API representation of the content object; see Jive ReST
API - Content Entity for further information.

5.2.2 JiveContent Images Dict Format

When images are uploaded in Jive, they are assigned unique identifiers. There is no simple way to determine if an
image has already been uploaded to Jive (i.e. the system does not store, or at least does not expose via the API, any
sort of checksum). As such, to prevent uploading the same image (as a new Jive object) on every update of a content
object, we must store information about the images already uploaded for a given content object and determine on the
client side if an image already exists in Jive.

The images dict, returned as the value of the images key of the JiveContent Return Dict Format, stores this
information.

Keys of this dict are the string hexdigest of the sha256 checksum of the image’s binary content, as returned by passing
the image’s content through hashlib.sha256 (see__load image_ from disk () forimplementation). Values
are dicts describing the image, namely:

location [(string)] The URI to the binary image itself as returned by Jive when uploading the image. This is the
URI used when embedding the image in HTML.

jive_object [(dict)] The Image Object returned by Jive when uploading the image; see the Jive ReST API - Image
Entity for details.

local_path [(string)] The original local path to the image in input HTML, i.e. the src attribute of the image tag
in the original HTML passed to JiveContent.

If this dict is not persisted by the client and passed back in on subsequent method calls that update the content, images
will be re-uploaded as distinct Jive objects every time.

5.2.3 Usage

jiveapi contains two main classes, JiveApi and JiveContent. The JiveApi class contains the low-level meth-
ods that map directly to Jive’s API, such as creating and updating Content and Images. These methods generally
require dicts (serialized to JSON objects in the API calls) that comply with the Jive API documentation for each object
type. The JiveContent class wraps an instance of JiveApi and provides higher-level convenience methods for
generating these API calls such as posting a string of HTML as a Document in a specific Place. JiveContent also
contains static helper methods, such as for manipulating HTML to appear properly in Jive.

5.2.4 Examples

For examples of the use of the low-level methods in JiveAp1i, see the source code of the unit tests and of the high-
level JiveContent class.

5.2.4.1 Uploading HTML as a Document

In this example we assume that we have a HTML file, index .html, in our current directory that we want to upload
to the Jive server at http://jive.example.com as a Document. If the HTML contains any images, they are
either in our current directory or have paths relative to our current directory.

import json
from jiveapi import JiveApi, JiveContent
apl = JiveApi('http://jive.example.com', 'username', 'password')

(continues on next page)

5.2. Usage and Examples 13

https://developers.jivesoftware.com/api/v3/cloud/rest/ContentEntity.html
https://developers.jivesoftware.com/api/v3/cloud/rest/ContentEntity.html
https://docs.python.org/3/library/hashlib.html#module-hashlib
https://developers.jivesoftware.com/api/v3/cloud/rest/ImageEntity.html
https://developers.jivesoftware.com/api/v3/cloud/rest/ImageEntity.html
https://developers.jivesoftware.com/api/v3/cloud/rest/index.html
https://developers.jivesoftware.com/api/v3/cloud/rest/ContentEntity.html
https://developers.jivesoftware.com/api/v3/cloud/rest/ImageEntity.html
https://developers.jivesoftware.com/api/v3/cloud/rest/DocumentEntity.html

jiveapi Documentation, Release 0.2.0

(continued from previous page)

jive = JiveContent (api)
with open('index.html', 'r') as fh:
html = fh.read()
res = jive.create_html_document ('My Title', html)
with open('jive_document.json', 'w') as fh:
fh.write (json.dumps (res))

Note that we have JSON-serialized the return value of create html_document (), which is a dict in the Jive-
Content Return Dict Format. We will need this information when updating the Document in the future; this example
just writes it to a file in the current directory, but any non-trivial use should probably store it in a database or key/value
store.

5.2.4.2 Updating an Existing Document

Following on the previous example, let’s assume that we’ve made some edits to the HTML and replaced one of the
images in it and want to make those changes in Jive. We’ll use the update_html_document () method for this:

import json
from jiveapi import JiveApi, JiveContent
api = JiveApi ('http://jive.example.com', 'username',6 'password')
jive = JiveContent (api)
with open('index.html', 'r') as fh:
html = fh.read()
with open('jive_document.json', 'r') as fh:

doc = json.loads (fh.read())
res = jive.update_html_document (doc['contentID'], 'My Title', html, images=doc|['images
—"1)
with open('jive_document. json', 'w') as fh:

fh.write (json.dumps (res))

We should now have a properly-updated document in Jive. This process only uploads new images.

5.2.4.3 Notable Options

The create_html_document () and update_html_document () methods share many common options.
See their documentation for the full list, but here are some that may be of particular interest:

tags [(list)] a list of string tags to add to the content

place_id [(string)] the ID of a Place to create the content in. This can be obtained by browsing to a place in the Jive
Ul and appending /api/v3 to the URL.

set_datetime [(datetime.datetime)] the Jive API allows you to explicitly specify the creation/update date on content,
i.e. for use when migrating content in.

toc [(boolean)] prepend the Jive Table of Contents macro to the content.

header_alert [(str or tuple)] prepend a Jive Alert Box macro to the content, such as to remind users that it was created
by an external system.

footer_alert [(str or tuple)] append a Jive Alert Box macro to the content, such as to link to the build that updated it.

14 Chapter 5. Contents

jiveapi Documentation, Release 0.2.0

5.2.5 Docker Examples

The jiveapi Docker image is an Alpine Linux / Python 3.6 image that comes with jiveapi, Sphinx, the Read The Docs
Sphinx theme, rinohtype and boto3. They are all installed globally. The default entrypoint of the container is /bin/
bash, dropping you into a root shell so that you can explore (i.e. run python). For normal use, you would most
likely write a script in your current working directory to do whatever you need, mount your current working directory
into the container, and then run that script.

For instance, one of the above examples could be saved as . / jive_upload.py and then run in the Docker container
with:

docker run —-it —--rm -v $(pwd) :/app jantman/Jjiveapi:0.1.0 bash -c 'cd /app && python_
—Jjive_upload.py'

Please keep in mind that, since the container runs as root, any files it writes to your current directory will be owned by
root.

5.2.6 Sphinx Theme and Builder

This package includes a Sphinx theme and builder that generate single-page HTML output optimized for uploading
to Jive via jiveapi. The theme is based on sphinx’ built-in “basic” theme and the builder is based on sphinx’ built-in
SingleFileHTMLBuilder.

To build your existing Sphinx documentation you need only install the jiveapi package and specify the “jiveapi” theme
and “jiveapi” builder. For example, if your documentation source is in the source/ directory, then you could build a
single-page jive-optimized HTML file to jivehtml/index.html with:

python -msphinx source Jjivehtml -b jiveapi -D html theme=jiveapi

5.2.7 Jive Sandbox for Testing

If you’re interested in trying this against something other than your real Jive instance, Jive maintains https://sandbox.
jiveon.com/ as a developer sandbox. There should be a How to Access Sandbox link in the header; as of the writing
of this software, it’s a completely automated process that should take less than five minutes (but result in a sales email
that you can ignore if you wish). Be aware that the sandbox seems to be rather unstable and prone to outages and
seemingly-random 500 errors.

5.3 Development and Testing

5.3.1 Installing for Development

1. Clone the git repo.
. virtualenv —--python=python3.6
. python setup.py develop

. pip install tox

1L VS I

. Make changes as necessary. Run tests with tox.

5.3. Development and Testing 15

https://hub.docker.com/r/jantman/jiveapi/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/en/latest/theming.html#builtin-themes
http://www.sphinx-doc.org/en/latest/usage/builders/index.html#sphinx.builders.html.SingleFileHTMLBuilder
https://sandbox.jiveon.com/
https://sandbox.jiveon.com/
https://community.jivesoftware.com/docs/DOC-172438

jiveapi Documentation, Release 0.2.0

5.3.2 Testing

Testing is done via tox and pytest. pip install tox then tox to run tests.

The package itself uses the wonderful requests package as a HTTP(S) client. Tests use the betamax pack-
age to record and replay HTTP(S) requests and responses. When adding a new test using betamax, set
JIVEAPI_TEST_MODE=--record in your environment to capture and record new requests - otherwise, out-
going HTTP requests will be blocked. To re-record a test, delete the current capture from tests/fixtures/
cassettes. Before committing test data, please inspect it and be sure that no sensitive information is in-
cluded. To print all base64 bodies from a specific betamax “cassette”, you can use jiveapi/tests/fixtures/
showcassette.py.

5.4 jiveapi

5.4.1 jiveapi package
5.4.1.1 Subpackages

jiveapi.sphinx_theme package

jiveapi.sphinx_theme.get_html_ theme path/()
Return list of HTML theme paths.

jiveapi.sphinx_theme.setup (app)

Submodules
jiveapi.sphinx_theme.builder module

class jiveapi.sphinx_theme.builder.JiveHtmlTranslator (builder, *args, **kwds)
Bases: sphinx.writers.html.HTMLTranslator

Subclass of sphinx’s built-in HTMLTranslator to fix some output nuances. Mainly, Jive overwrites “id”
elements on everything, so named anchors need to use the deprecated name attribute. We also need to identify
internal hrefs that link to index.html#something and strip the leading filename.

add_permalink_ref (node, title)
depart_title (node)
visit_reference (node)

class jiveapi.sphinx_theme.builder.JiveapiBuilder (app)
Bases: sphinx.builders.html.SingleFileHTMLBuilder

Subclass of sphinx’s built-in SingleFileHTMLBuilder to use JiveHtmlTranslator in place of
sphinx’s built-in HTMLTranslator.

default_translator_class

epilog = 'The Jive HTML page is in % (outdir)s.'
name = 'Jjiveapi'

script_files = []

jiveapi.sphinx_theme.builder.setup (app)

16 Chapter 5. Contents

https://tox.readthedocs.io/en/latest/
https://docs.pytest.org/en/latest/
http://docs.python-requests.org/en/master/
http://betamax.readthedocs.io/en/latest/index.html
http://www.sphinx-doc.org/en/latest/usage/builders/index.html#sphinx.builders.html.SingleFileHTMLBuilder

jiveapi Documentation, Release 0.2.0

5.4.1.2 Submodules

jiveapi.api module

class jiveapi.api.JiveApi (base_url, username, password)
Bases: object

Low-level client for the Jive API, with methods mapping directly to the Jive API endpoints.
Parameters

e base_url (str)— Base URL to the Jive API. This should be the scheme, hostname, and
optional port ending with a path of /api/ (i.e. https://sandbox.jiveon.com/
api/).

e username (str)— Jive API username
* password (str)—Jive API password

_get (path, autopaginate=True)
Execute a GET request against the Jive API, handling pagination.

Parameters
e path (str)— path or full URL to GET

* autopaginate (bool) —If True, automatically paginate multi-page responses and re-
turn a list of the combined results. Otherwise, return the unaltered JSON response.

Returns deserialized response JSON. Usually dict or list.

_post_Jjson (path, data)
Execute a POST request against the Jive API, sending JSON.

Parameters

* path (str) - path or full URL to POST to

e data (dict or 1ist)— Data to POST.
Returns deserialized response JSON. Usually dict or list.
Raises RequestFailedException

_put__json (path, data)
Execute a PUT request against the Jive API, sending JSON.

Parameters
e path (str) - path or full URL to PUT to
e data (dict or 1ist) - Data to POST.
Returns deserialized response JSON. Usually dict or list.

abs_url (path)
Given a relative path under the base URL of the Jive instance, return the absolute URL formed by joining
the base_url to the specified path.

Parameters path (st r) — relative path on Jive instance
Returns absolute URL to path on the Jive instance

Return type str

5.4. jiveapi 17

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

jiveapi Documentation, Release 0.2.0

api_version ()
Get the Jive API version information

Returns raw API response dict for /version endpoint
Return type dict

create_content (contents, publish_date=None)
POST to create a new Content object in Jive. This is the low-level direct API call that corresponds to
Create content. Please see the more specific wrapper methods if they suit your purposes.

Parameters

* contents (dict)— A JSON-serializable Jive content representation, suitable for POST-
ing to the /contents API endpoint.

* publish_date (datetime.datetime) — A backdated publish and update date to
set on the content. This allows publishing content with backdated publish dates, for mi-
gration purposes.

Returns API response of Content object
Return type dict
Raises RequestFailedException, ContentConflictException

get_content (content_id)
Given the content ID of a content object in Jive, return the API (dict) representation of that content object.
This is the low-level direct API call that corresponds to Get Content.

This GETs content with the “Silent Directive” that prevents Jive read counts from being incremented. See
Silent Directive for Contents Service.

Parameters content_id (st r) — the Jive contentID of the content
Returns content object representation
Return type dict

get_content_in_place (place_id)
Given the placelD of a Place in Jive, return a list of all Content in that Place. Note that this list can be
extremely long. Each element of the list is a full representation of the Content object, including body,
which should (theoretically) be identical to that returned by get_content (). This is the low-level
direct API call that corresponds to PlaceService - Get Content.

Note:

1. The place_id for a Place in Jive can be found by viewing the place in the web UI and appending
/api/v3tothe URL. It will be the placeID field of the resulting JSON response.

2. For some reason, while the web UI shows blog posts in Places, they actually belong to a blog-specific
child place and will not be returned in the response. To retrieve blog posts, view the JSON object for
the place using the /api/v3 URL and find the ref of the blog resource for it. You will then need
to call this method a second time with that placeID.

Parameters place_id (str) — the Jive placelD of the Place to list Content in
Returns list of content object representation dicts for content in the place
Return type 1ist of dict

get_image (image_id)

GET the image specified by image_id as binary content. This method currently can only retrieve the
exact original image. This is the low-level direct API call that corresponds to Get Image.

18 Chapter 5. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://developers.jivesoftware.com/api/v3/cloud/rest/ContentService.html#createContent%28String%2C%20String%2C%20String%2C%20String%29
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#dict
https://developers.jivesoftware.com/api/v3/cloud/rest/ContentService.html#getContent%28String%2C%20String%2C%20boolean%2C%20List%3CString%3E)
https://community.jivesoftware.com/docs/DOC-233174
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://developers.jivesoftware.com/api/v3/cloud/rest/PlaceService.html#getContent%28String,%20List%3CString%3E,%20String,%20int,%20int,%20String,%20boolean%29
https://docs.python.org/3/library/stdtypes.html#str
https://developers.jivesoftware.com/api/v3/cloud/rest/ImageService.html#getImage%28String%2C%20String%2C%20String%2C%20String%2C%20String%29

jiveapi Documentation, Release 0.2.0

Parameters image_id (str) — Jive Image ID to get. This can be found in a Content (i.e.
Document or Post) object’s content Images list.

Returns binary content of Image
Return type bytes

update_content (content_id, contents, update_date=None)
PUT to update an existing Content object in Jive. This is the low-level direct API call that corresponds to
Update content. Please see the more specific wrapper methods if they suit your purposes.

Warning: In current Jive versions, it appears that editing/updating a (blog) Post will change the date-based
URL to the post, breaking all existing links to it!

Parameters
* content_id (str)— The Jive contentID of the content to update.

* contents (dict)— A JSON-serializable Jive content representation, suitable for POST-
ing to the /contents API endpoint.

* update_date (datetime.datet ime) — A backdated update date to set on the con-
tent. This allows publishing content with backdated publish dates, for migration purposes.

Returns API response of Content object
Return type dict
Raises RequestFailedException, ContentConflictException

upload_image (img_data, img_filename, content_type)
Upload a new Image resource to be stored on the server as a temporary image, i.e. for em-
bedding in an upcoming Document, Post, etc. Returns Image object and the user-facing URI
for the image itself, i.e. https://sandbox.jiveon.com/api/core/v3/images/6011747?
a=1522503578891 . This is the low-level direct API call that corresponds to Upload New Image.

Note: Python’s request s lacks streaming file support. As such, images sent using this method will be
entirely read into memory and then sent. This may not work very well for extremely large images.

Warning: As far as I can tell, the user-visible URI to an image can only be retrieved when the image is
uploaded. There does not seem to be a way to get it from the API for an existing image.

Parameters
e img_data (bytes)— The binary image data.
* img_filename (st r)— The filename for the image. This is purely for display purposes.
e content_type (str) - The MIME Content Type for the image data.

Returns 2-tuple of (string user-facing URI to the image i.e. for use in HTML, dict Image object
representation)

Return type tuple

user (id_number="@me’)
Return dict of information about the specified user.

Parameters id_number (st r)— User ID number. Defaults to @me, the current user
Returns user information

Return type dict

5.4. jiveapi 19

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://developers.jivesoftware.com/api/v3/cloud/rest/ContentService.html#updateContent%28String%2C%20String%2C%20String%2C%20boolean%2C%20String%2C%20boolean%29
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#dict
https://developers.jivesoftware.com/api/v3/cloud/rest/ImageService.html#uploadImage%28MultipartBody%29
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

jiveapi Documentation, Release 0.2.0

jiveapi.api.TIME_FORMAT = '$Y-%m-%dT%$H:%M:%S.000%z'

API url param timestamp format, like 2012-01-31T22:46:12.044+0000° note that sub-second time is ignored
and set to zero.

jiveapi.content module

class jiveapi.content.JiveContent (api, image_dir=None)

Bases: object

High-level Jive API interface that wraps JiveApi with convenience methods for common tasks relating to
manipulating Content and Image objects.

Methods in this class that involve uploading images require storing state out-of-band. For information on that
state, see JiveContent Images Dict Format.

Parameters
* api (jiveapi.api.JiveApi)— authenticated API instance

* image_dir (str) - The directory/path on disk to load images relative to. This should be
an absolute path. If not specified, the result of os.getcwd () will be used.

static _is_local_image (src)
Given the string path to an image, return True if it appears to be a local image and False if it appears to be
a remote image. We consider an image remote (return False) if ur11lib.parse.urlparse () returns
an empty string for scheme, or local (return True) otherwise. Also returns False if src is None.

Parameters src (str)— the value of image tag’s src attribute

Returns True if the image appears to be local (relative or absolute path) or False if it appears to
be remote

Return type bool

_load_image_from_disk (img_path)
Given the path to an image taken from the src attribute of an img tag, load it from disk. If the path
is relative, it will be loaded relative to self._image_dir. Return a 3-tuple of a string describing the
Content-Type of the image, the raw bytes of the image data, and the sha256 sum of the image data. The
content type is determined using the Python standard library’s imghdr.what ().

Parameters img path (st r) — path to the image on disk

Returns (str Content-Type, bytes binary image content read from disk, st r hex sha256 sum
of bytes)

Return type tuple

_upload_images (root, images={})
Given the root Element of a (HTML) document, find all img tags. For any of them that have a src attribute
pointing to a local image (as determined by _is_Ilocal_image ()), read the corresponding image file
from disk, upload it to the Jive server, and then replace the src attribute with the upload temporary URL
and add an entry to the image dictionary (second element of the return value).

The format of the second element of the return value is the images dict format described in this class under
JiveContent Images Dict Format.

Important: The images dict (second element of return value) must be externally persisted.
Parameters root (1xml.etree._Element) - root node of etree to inline CSS in

Returns 2-tuple of (root with attributes modified as appropriate, and a dict mapping the origi-
nal image paths to the API response data for them)

20

Chapter 5. Contents

https://docs.python.org/3/library/functions.html#object
https://developers.jivesoftware.com/api/v3/cloud/rest/ContentEntity.html
https://developers.jivesoftware.com/api/v3/cloud/rest/ImageEntity.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.getcwd
https://docs.python.org/3/library/urllib.parse.html#urllib.parse.urlparse
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/imghdr.html#imghdr.what
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

jiveapi Documentation, Release 0.2.0

Return type tuple

create_html_document (subject, html, tags=[], place_id=None, visibility=None,
set_datetime=None, inline_css=True, jiveize=True, handle_images=True,

editable=Fulse, toc=False, header_alert=None, footer_alert=None)
Create a HTML Document in Jive. This is a convenience wrapper around create_content () to assist

with forming the content JSON, as well as to assist with HTML handling.

Important: In order to update the Document in the future, the entire return value of this method must be
externally persisted and passed in to future method calls via the content_id and images parameters.

Parameters
* subject (str)— The subject/ title of the Document.

* html (str) - The HTML for the Document’s content. See the notes in the jiveapi pack-
age documentation about HTML handling.

* tags (11ist)— List of string tags to add to the Document

* place_id (str) — If specified, post this document in the Place with the specified pla-
celD. According to the API documentation for the Document type (linked above), this
requires visibility to be set to “place”.

e visibility (str) — The visibility policy for the Document. Valid values per the
API documentation are: all (anyone with appropriate permissions can see the content),
hidden (only the author can see the content), or place (place permissions specify which
users can see the content).

* set_datetime (datetime.datetime) — datetime.datetime to set as the publish
time. This allows backdating Documents to match their source publish time.

* inline_css (bool)—if True, pass input HTML through iniine css _etree() to
convert any embedded CSS to inline CSS so that Jive will preserve/respect it.

* jiveize (bool) —if True, pass input HTML through jiveize etree () to make it
look more like how Jive styles HTML internally.

* handle_images (bool) — if True, pass input HTML through _upload images ()
to upload all local images to Jive.

* editable (bool) - set to True if the content HTML includes Jive RTE Macros. Other-
wise, they will not be processed by Jive.

* toc (bool) —If True, insert the Jive RTE “Table of Contents” macro at the beginning of
the html. Setting this to True forces editable to be True.

* header_alert (str or tuple) — If not None, insert a Jive RTE “Alert” macro at
the beginning of the html (after the Table of Contents, if present). Setting this to forces
editable to be True. The value of this parameter can either be a string which will be
used as the content of a “info” alert box, or a 2-tuple of the string alert box type (one of

CEINT3 EEINT3

“info”, “success”, “warning” or “danger”) and the string content.

e footer_alert (str or tuple) — If not None, insert a Jive RTE “Alert” macro at the
end of the html. Setting this forces editable to be True. The value of this parameter
can either be a string which will be used as the content of a “info” alert box, or a 2-tuple of

the string alert box type (one of “info”, “success”, “warning” or “danger”) and the string
content.

Returns dict describing the created content object in Jive. See JiveContent Return Dict Format
for details.

Return type dict

5.4. jiveapi 21

https://docs.python.org/3/library/stdtypes.html#tuple
https://developers.jivesoftware.com/api/v3/cloud/rest/DocumentEntity.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

jiveapi Documentation, Release 0.2.0

Raises RequestFailedException, ContentConflictException

dict_for_ html_document (subject, html, tags=[], place_id=None, visibility=None, in-
line_css=True, jiveize=True, handle_images=True, editable=False,

toc=False, header_alert=None, footer_alert=None, images={})
Generate the API (dict/JSON) representation of a HTML Document in Jive, used by

create_html_document ().

The format of the second element of the return value is the images dict format described in this class under
JiveContent Images Dict Format.

Important: The images dict (second element of return value) must be externally persisted or else all
images will be re-uploaded every time this is run.

Parameters
* subject (str)— The subject/ title of the Document.

* html (str)- The HTML for the Document’s content. See the notes in the jiveapi pack-
age documentation about HTML handling.

* tags (11st)— List of string tags to add to the Document

* place_id (str) — If specified, post this document in the Place with the specified pla-
celD. According to the API documentation for the Document type (linked above), this
requires visibility to be set to “place”.

* visibility (str) — The visibility policy for the Document. Valid values per the
API documentation are: all (anyone with appropriate permissions can see the content),
hidden (only the author can see the content), or place (place permissions specify which
users can see the content).

* set_datetime (datetime.datetime) — datetime.datetime to set as the publish
time. This allows backdating Documents to match their source publish time.

* inline_css (bool)—if True, pass input HTML through inline css_etree() to
convert any embedded CSS to inline CSS so that Jive will preserve/respect it.

* jiveize (bool) —if True, pass input HTML through jiveize etree () to make it
look more like how Jive styles HTML internally.

* handle_images (bool) — if True, pass input HTML through _upload images ()
to upload all local images to Jive.

¢ editable (bool) - set to True if the content HTML includes Jive RTE Macros. Other-
wise, they will not be processed by Jive.

* toc (bool)—If True, insert the Jive RTE “Table of Contents” macro at the beginning of
the html. Setting this to True forces editable to be True.

¢ header_alert (str or tuple) — If not None, insert a Jive RTE “Alert” macro at
the beginning of the html (after the Table of Contents, if present). Setting this to forces
editable to be True. The value of this parameter can either be a string which will be
used as the content of a “info” alert box, or a 2-tuple of the string alert box type (one of

CEINT3 EEINNT3

“info”, “success”, “warning” or “danger”) and the string content.

e footer_alert (str or tuple) — If not None, insert a Jive RTE “Alert” macro at the
end of the html. Setting this forces editable to be True. The value of this parameter
can either be a string which will be used as the content of a “info” alert box, or a 2-tuple of

the string alert box type (one of “info”, “success”, “warning” or “danger”) and the string
content.

22 Chapter 5. Contents

https://developers.jivesoftware.com/api/v3/cloud/rest/DocumentEntity.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

jiveapi Documentation, Release 0.2.0

* images (dict) — a dict of information about images that have been already up-
loaded for this Document. This parameter should be the value of the images
key from the return value of this method (or of create html document () or
update_html_document ()).

Returns 2-tuple of (dict representation of the desired Document ready to pass to the Jive API,
dict images data to persist for updates)

Return type tuple

static etree_add alert (root, alert_spec, header=True)
Add an alert macro to the specified tree, either at the beginning or end of the body.

Parameters
e root (1xml.etree._Element)—root node of etree to add Alert macro to

* alert_spec (stror tuple)—The value of this parameter can either be a string which
will be used as the content of a “info” alert box, or a 2-tuple of the string alert box type

99 ¢ LEIT3

(one of “info”, “success”, “warning” or “danger”) and the string content.

* header (bool) — add to beginning of body element (header) if True, otherwise add to
end of body element (footer)

Returns root node of etree containing modified HTML
Return type 1xml.etree._Element or lxml.etree._ElementTree

static etree_add_toc (ro0f)
Return the provided Element with a Jive RTE “Table of Contents” macro prepended to the body.

Parameters root (1xml.etree._Element) —root node of etree to add Table of Contents
macro to

Returns root node of etree containing modified HTML
Return type 1xml.etree._Element or lxml.etree._ElementTree

static html to_ etree (html)
Given a string of HTML, parse via etree. fromstring () and return either the roottree if a doctype is
present or the root otherwise.

Important Note: If the document passed in has a doctype, it will be stripped out. That’s fine, since Jive
wouldn’t recognize it anyway.

Parameters html (st r)— HTML string
Returns root of the HTML tree for parsing and manipulation purposes
Return type 1xml.etree._Element or lxml.etree._ElementTree

static inline css_etree (root)
Given an etree root node, uses premailer’s transform method to convert all CSS from embed-
ded/internal/external to inline, as Jive only allows inline CSS.

Parameters root (1xml.etree._Element) - root node of etree to inline CSS in
Returns root node of etree with CSS inlined
Return type 1xml.etree._Element or 1xml.etree._ElementTree

static inline_css_html (itml)
Wrapper around inline css_etree () thattakes a string of HTML and returns a string of HTML.

Parameters html (st r) - input HTML to inline CSS in

5.4. jiveapi 23

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
http://github.com/peterbe/premailer
https://docs.python.org/3/library/stdtypes.html#str

jiveapi Documentation, Release 0.2.0

Returns HTML with embedded/internal CSS inlined
Return type str

static jiveize_etree (100t, no_sourcecode_style=True)
Given a Ixml etree root, perform some formatting and style fixes to get each element in it to render correctly
in the Jive Ul

* If no_sourcecode_style is True, remove the style attribute from any div elements with a
class of sourceCode.

e In all <pre> elements, convert \n to
\nvianewline to br().
» For any HTML tags that are keys of TAGSTYLES, set their style attribute according to TAGSTYLES.

* Change the name attribute on all a elements to replace dashes with underscores, and do the same on
the href attributes of any a elements that begin with #. Apparently Jive breaks anchor links that
contain dashes.

* For any element with an id attribute, append a named anchor to it with a name the same as its’ id.
If it is an anchor, copy the id to the name. We do this because Jive removes or overwrites many id
attributes.

Elements which have a “jivemacro” attribute present will not be modified.
Parameters
e root (1xml.etree._Element)—root node of etree to jive-ize

* no_sourcecode_style (bool)-If True, remove the st yle attribute from any div
elements with a class of sourceCode.

Returns root node of etree containing jive-ized HTML
Return type 1xml.etree._Element or lxml.etree._ElementTree

static jiveize_html (html, no_sourcecode_style=True)
Wrapper around jiveize etree () thattakes a string of HTML and returns a string of HTML.

Parameters
e html (str)—input HTML to Jive-ize

* no_sourcecode_style (bool)—If True, remove the st yle attribute from any div
elements with a class of sourceCode.

Returns jive-ized HTML
Return type str

update_html_document (content_id, subject, html, tags=[], place_id=None, visibility=None,
set_datetime=None, inline_css=True, jiveize=True, handle_images=True,
editable=False, toc=False, header_alert=None, footer_alert=None, im-

ages={})
Update a HTML Document in Jive. This is a convenience wrapper around update_content () to

assist with forming the content JSON, as well as to assist with HTML handling.

Important: In order to update the Document in the future, the entire return value of this method must be
externally persisted and passed in to future method calls via the content_id and images parameters.

Parameters

* content_id (str) — the Jive contentID to update. This is the contentID el-
ement of the JiveContent Return Dict Format that is returned by this method or
create_html_document ().

24 Chapter 5. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://developers.jivesoftware.com/api/v3/cloud/rest/DocumentEntity.html
https://docs.python.org/3/library/stdtypes.html#str

jiveapi Documentation, Release 0.2.0

* subject (str)— The subject/ title of the Document.

e html (str) - The HTML for the Document’s content. See the notes in the jiveapi pack-
age documentation about HTML handling.

* tags (11ist)— List of string tags to add to the Document

* place_id (str) — If specified, post this document in the Place with the specified pla-
celD. According to the API documentation for the Document type (linked above), this
requires visibility to be set to “place”.

* visibility (str) — The visibility policy for the Document. Valid values per the
API documentation are: all (anyone with appropriate permissions can see the content),
hidden (only the author can see the content), or place (place permissions specify which
users can see the content).

* set_datetime (datetime.datetime) — datetime.datetime to set as the publish
time. This allows backdating Documents to match their source publish time.

* inline_css (bool)—if True, pass input HTML through iniine css_etree() to
convert any embedded CSS to inline CSS so that Jive will preserve/respect it.

* jiveize (bool) —if True, pass input HTML through jiveize etree () to make it
look more like how Jive styles HTML internally.

* handle_images (bool) — if True, pass input HTML through _upload images ()
to upload all local images to Jive.

¢ editable (bool) - set to True if the content HTML includes Jive RTE Macros. Other-
wise, they will not be processed by Jive.

* toc (bool) —If True, insert the Jive RTE “Table of Contents” macro at the beginning of
the html. Setting this to True forces editable to be True.

* header_alert (str or tuple) — If not None, insert a Jive RTE “Alert” macro at
the beginning of the html (after the Table of Contents, if present). Setting this to forces
editable to be True. The value of this parameter can either be a string which will be
used as the content of a “info” alert box, or a 2-tuple of the string alert box type (one of

CEINT3 EEINT3

“info”, “success”, “warning” or “danger”) and the string content.

e footer_alert (str or tuple) — If not None, insert a Jive RTE “Alert” macro at the
end of the html. Setting this forces editable to be True. The value of this parameter
can either be a string which will be used as the content of a “info” alert box, or a 2-tuple of

the string alert box type (one of “info”, “success”, “warning” or “danger”) and the string
content.

* images (dict) — a dict of information about images that have been already up-
loaded for this Document. This parameter should be the value of the images
key from the JiveContent Return Dict Format that is returned by this method or
create_html_document ().

Returns dict describing the created content object in Jive. See JiveContent Return Dict Format
for details.

Return type dict
Raises RequestFailedException, ContentConflictException

jiveapi.content.TAGSTYLES = {'blockquote': ‘'padding: O lem; color: #6a737d; border-left
This is a mapping of certain HTML tags to the Jive styles to apply to them.

5.4. jiveapi 25

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

jiveapi Documentation, Release 0.2.0

jiveapi.content .newline_to_br (elem)

Helper function for jiveize html (). Given a html Element, convert it to a string, add explicit
 tags
before all newlines, and return a new Element with that content.

Parameters elem (1xml.etree._Element)— element to modify
Returns modified element

Return type 1xml.etree._Element
jiveapi.exceptions module

exception jiveapi.exceptions.ContentConflictException (response)
Bases: jiveapi.exceptions.RequestFailedException

Exception raised when the Jive server response indicates that there is a conflict between the submitted content
and content already in the system, such as two content objects of the same type with the same name.

Parameters response (requests.Response) — the response that generated this exception

_message_for_ response (resp)

exception jiveapi.exceptions.RequestFailedException (response)
Bases: RuntimeError

Exception raised when a Jive server response contains a HTTP status code that indicates an error, or is not the
expected status code for the request.

Parameters response (requests.Response) — the response that generated this exception

_message_for_ response (resp)
jiveapi.jiveresponse module

class jiveapi.jiveresponse.JiveResponse
Bases: requests.models.Response

Subclass of requests.Response to handle automatically trimming the JSON Security String from the
beginning of Jive API responses.

json (**kwargs)
Returns the json-encoded content of a response, if any, with the leading JSON Security String stripped off.
Parameters kwargs — Optional arguments that json. loads takes.
Raises ValueError — If the response body does not contain valid json.

jiveapi.jiveresponse.requests_hook (response, ¥*_)
requests.Session response hook to return JiveResponse objects instead of plain requests.
Response objects.

Add this to a requests.Session like

session.hooks['response'].
append (requests_hook)

jiveapi.utils module

jiveapi.utils.prettyjson (j)
Return pretty-printed JSON.

26 Chapter 5. Contents

http://docs.python-requests.org/en/master/api/#requests.Response
https://docs.python.org/3/library/exceptions.html#RuntimeError
http://docs.python-requests.org/en/master/api/#requests.Response
http://docs.python-requests.org/en/master/api/#requests.Response
https://developers.jivesoftware.com/api/v3/cloud/rest/index.html#security
https://docs.python.org/3/library/exceptions.html#ValueError
http://docs.python-requests.org/en/master/api/#requests.Session
http://docs.python-requests.org/en/master/api/#requests.Response
http://docs.python-requests.org/en/master/api/#requests.Response
http://docs.python-requests.org/en/master/api/#requests.Session

jiveapi Documentation, Release 0.2.0

Parameters j — object to JSON serialize
Returns pretty-printed JSON serialized version of j
Return type str

jiveapi.utils.set_log_debug (logger)
set logger level to DEBUG, and debug-level output format, via set_log level format ().

jiveapi.utils.set_log_info (logger)
set logger level to INFO via set_log level format ().

jiveapi.utils.set_log_level_ format (logger, level, format)
Set logger level and format.

Parameters
* logger (logging. Logger) — the logger object to set on
* level (int) - logging level; see the 1ogging constants.

* format (str)— logging formatter format string

jiveapi.version module
jiveapi.version.PROJECT_URL = 'https://github.com/jantman/jiveapi'

Constant to hold the project URL, used both in setup . py and anywhere in the code that reports the version.

jiveapi.version.VERSION = '0.2.0'
Constant to hold this version of the package, used both in setup . py and anywhere in the code that reports the
version.

5.5 Changelog

5.5.1 0.2.0 (2018-04-21)

* Add support to list Content in a specific Place.

5.5.2 0.1.0 (2018-04-07)

e Initial release

5.5. Changelog 27

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/stdtypes.html#str

jiveapi Documentation, Release 0.2.0

28 Chapter 5. Contents

CHAPTER O

Indices and tables

* genindex
* modindex

e search

29

jiveapi Documentation, Release 0.2.0

30 Chapter 6. Indices and tables

Python Module Index

]

jiveapi, 16

jiveapi.api, 17
jiveapi.content, 20
Jjiveapi.exceptions, 26

jiveapi. jiveresponse, 26
jiveapi.sphinx_theme, 16
jiveapi.sphinx_theme.builder, 16
jiveapi.utils, 26
jiveapi.version, 27

31

jiveapi Documentation, Release 0.2.0

32 Python Module Index

Index

Symbols

_get() (jiveapi.api.JiveApi method), 17

_is_local_image() (jiveapi.content.JiveContent static
method), 20

_load_image_from_disk() (jiveapi.content.JiveContent
method), 20

_message_for_response()
(jiveapi.exceptions.ContentConflictException
method), 26

_message_for_response()
(jiveapi.exceptions.RequestFailedException
method), 26

_post_json() (jiveapi.api.JiveApi method), 17

_put_json() (jiveapi.api.JiveApi method), 17

_upload_images() (jiveapi.content.JiveContent method),
20

A

abs_url() (jiveapi.api.JiveApi method), 17

add_permalink_ref() (jiveapi.sphinx_theme.builder.J ivthmmﬁ{%slgts(gr html()

method), 16
api_version() (jiveapi.api.JiveApi method), 17

C

ContentConflictException, 26

create_content() (jiveapi.api.JiveApi method), 18

create_html_document() (jiveapi.content.JiveContent
method), 21

D

default_translator_class (iiveapi.sphinx_theme.builder.Jivea[Hﬁu

attribute), 16

depart_title() (jiveapi.sphinx_theme.builder.JiveHtmlTransl

method), 16
dict_for_html_document()
method), 22

(jiveapi.content.JiveContent

E

epilog (jiveapi.sphinx_theme.builder.JiveapiBuilder at-
tribute), 16

etree_add_alert() (jiveapi.content.JiveContent static
method), 23
etree_add_toc() (jiveapi.content.JiveContent static

method), 23

G

get_content() (jiveapi.api.JiveApi method), 18
get_content_in_place() (jiveapi.api.JiveApi method), 18

get_html_theme_path() (in module
jiveapi.sphinx_theme), 16

get_image() (jiveapi.api.JiveApi method), 18

H

html_to_etree() (jiveapi.content.JiveContent static

method), 23

inline_css_etree() (jiveapi.content.JiveContent static
method), 23
(jiveapi.content.JiveContent static
method), 23

J

JiveApi (class in jiveapi.api), 17

jiveapi (module), 16

jiveapi.api (module), 17

jiveapi.content (module), 20
jiveapi.exceptions (module), 26
jiveapi.jiveresponse (module), 26
a,HéIgphinx_theme (module), 16
Jiveapi.sphinx_theme.builder (module), 16

EE’g’(\)/feapi.utils (module), 26

Jjiveapi.version (module), 27

JiveapiBuilder (class in jiveapi.sphinx_theme.builder), 16

JiveContent (class in jiveapi.content), 20

JiveHtmlITranslator (class in
jiveapi.sphinx_theme.builder), 16

jiveize_etree() (jiveapi.content.JiveContent
method), 24

static

33

jiveapi Documentation, Release 0.2.0

jiveize_html() (jiveapi.content.JiveContent static
method), 24

JiveResponse (class in jiveapi.jiveresponse), 26

json() (jiveapi.jiveresponse.JiveResponse method), 26

N

name (jiveapi.sphinx_theme.builder.JiveapiBuilder
attribute), 16
newline_to_br() (in module jiveapi.content), 25

P

prettyjson() (in module jiveapi.utils), 26
PROJECT_URL (in module jiveapi.version), 27

R

RequestFailedException, 26
requests_hook() (in module jiveapi.jiveresponse), 26

S

script_files (jiveapi.sphinx_theme.builder.JiveapiBuilder
attribute), 16

set_log_debug() (in module jiveapi.utils), 27

set_log_info() (in module jiveapi.utils), 27

set_log_level_format() (in module jiveapi.utils), 27

setup() (in module jiveapi.sphinx_theme), 16

setup() (in module jiveapi.sphinx_theme.builder), 16

T

TAGSTYLES (in module jiveapi.content), 25
TIME_FORMAT (in module jiveapi.api), 19

U

update_content() (jiveapi.api.JiveApi method), 19

update_html_document() (jiveapi.content.JiveContent
method), 24

upload_image() (jiveapi.api.JiveApi method), 19

user() (jiveapi.api.JiveApi method), 19

\Y

VERSION (in module jiveapi.version), 27
visit_reference() (jiveapi.sphinx_theme.builder.JiveHtmlTranslator
method), 16

34

Index

	Scope and Status
	Supported Actions

	Requirements
	Usage
	License
	Contents
	Getting Started
	Local Installation
	Use via Docker Image
	Authentication
	Important Notes
	Content IDs
	HTML

	Usage and Examples
	JiveContent Return Dict Format
	JiveContent Images Dict Format
	Usage
	Examples
	Uploading HTML as a Document
	Updating an Existing Document
	Notable Options

	Docker Examples
	Sphinx Theme and Builder
	Jive Sandbox for Testing

	Development and Testing
	Installing for Development
	Testing

	jiveapi
	jiveapi package
	Subpackages
	Submodules

	Changelog
	0.2.0 (2018-04-21)
	0.1.0 (2018-04-07)

	Indices and tables
	Python Module Index

